Problem 1.7

Law of sines*
Prove the law of sines using the cross product. It should only take a couple of lines.

Solution

Figure 1: Schematic of a triangle.
We have to prove the law of sines, which states that the following must hold for a triangle.

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

The magnitude of a cross product is defined to be the product of the vectors' magnitudes times the sine of the angle between them.

$$
|\mathbf{A} \times \mathbf{B}|=|\mathbf{A}||\mathbf{B}| \sin \theta
$$

If we treat each side of the triangle in the figure as a vector, then we can take the cross product of the different sides.

$$
\begin{aligned}
& |\overrightarrow{A C} \times \overrightarrow{A B}|=|\overrightarrow{A C}||\overrightarrow{A B}| \sin A=b c \sin A \\
& |\overrightarrow{B C} \times \overrightarrow{B A}|=|\overrightarrow{B C}||\overrightarrow{B A}| \sin C=a c \sin B \\
& |\overrightarrow{A C} \times \overrightarrow{B C}|=|\overrightarrow{A C}||\overrightarrow{B C}| \sin C=a b \sin C
\end{aligned}
$$

The magnitude of the cross product represents the area of the parallelogram created from the two vectors. Since $|\overrightarrow{A C}|,|\overrightarrow{B C}|$, and $|\overrightarrow{B A}|$ are the sides of the same triangle, the three expressions above must be equal.

$$
b c \sin A=a c \sin B=a b \sin C
$$

If we divide each side by $a b c$, then we get the law of sines.

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

